0

Votre panier

0
Sous-total : AUD0
Aucun produit dans le panier.

Explication du dimensionnement des câbles d'alimentation en court-circuit

Explication du dimensionnement des câbles d'alimentation en court-circuit

Equations for short-circuit cable ratings are provided
Short circuit cable rating ELEK Software 1 1170x585 - Short Circuit Power Cable Sizing Explained

Table des matières

Short-circuit cable ratings

During a short circuit, the fault current that flows (before the protective device interrupts) causes the temperature of the power cables to rise dramatically. The heat generated inside the cable during a fault depends on the conductor size and material as well as the fault current and its duration.

There are temperature limits that power cables can withstand where the limiting temperature is that of the cable insulation. The temperature limits of the insulation, which depend on their material type, are higher than the normal operating temperature limits since faults occur only for a short time.


Therefore, there is a minimum conductor size (of a particular cable type – the formulae contain quantities that vary with the materials used within the cables) required to withstand a certain fault current and the associated fault time. Short circuit rating of the main conductors of low-voltage power cables is an important factor to consider when sizing power cables alongside current-carrying capacity and voltage drop.

The following standards require designers to calculate the short-circuit rating of the conductors in power cables: AS/NZS 3008.1, BS 7671, and IEC 60364.

Adiabatic versus non-adiabatic method

The adiabatic method is used to calculate the minimum conductor size or another current-carrying conductor when heat loss from the current-carrying component during the short circuit is neglected. The adiabatic method is a conservative approach, that is valid for short-circuit duration of up to 5 s.

The non-adiabatic method, on the other hand, assumes an appropriate allowance for heat loss into the insulation during the short circuit, which is applicable for all short-circuit durations. The non-adiabatic short-circuit rating is determined by calculating a modifying factor that takes into account the non-adiabatic heating effect and applying it to the adiabatic short-circuit rating.

In comparison, the non-adiabatic method will provide significant increases in the permissible short-circuit ratings of metallic screens, sheaths, and small conductors < 10 mm2. However, the non-adiabatic method is more complicated and in practice for the usual range of power cable conductors, there will be less than a 5 % difference in the short-circuit rating obtained using the adiabatic method.

In general, when the ratio of the conductor size to short-circuit duration is > 10 (mm2/s) the increase in short-circuit rating is negligible and the adiabatic method can be used.

Calculation of the minimum cross-section area to withstand short-circuit current

The following equation is based on the adiabatic method which is commonly used for determining short-circuit ratings for low-voltage power cables. As mentioned previously the adiabatic method for short-circuit durations of up to 5 seconds.

\(S_{min} = \sqrt{\frac{I^2t}{K^2}}\)



I is the short-circuit current (r.m.s over duration), in amperes.

t is the duration of short circuit, in seconds.

K is the constant depending on the material of the current-carrying component, the initial temperature and final temperature of the current-carrying component.

S is the cross-sectional area of the current-carrying component, in square millimetres

K-factor calculations

The calculation of K factor refers to the International Standard IEC 60364-5-54 Annex A.

The K factor is calculated from the formula below:

\(K = \sqrt{\frac{Q_c(\beta+20)}{\rho_{20}}\ln\frac{\beta+\theta_f}{\beta+\theta_i}}\)
Where \(Q_c\)is the volumetric heat capacity of conductor material (J/K mm3) at 20 °C; \(\beta\) is the reciprocal of temperature coefficient of resistivity at 0 °C for the conductor (°C); \(\rho_{20}\)is the electrical resistivity of conductor material at 20 °C (Ω.mm); \(\theta_i\) is the initial temperature of conductor (°C); \(\theta_f\) is the final temperature of conductor (°C).
The value of parameters for different materials are shown below.

Short-circuit temperature limits for cables

As the formula above shows, to calculate the K factor the initial and final temperatures of the conductors are required. There are various tables in the standards that provide either initial and final temperature limits or specify K-values or both.

Short-circuit current and duration

The short-circuit current to use should be based on the actual fault currents in the electrical system which can be calculated using software from a “fault study”. For determining the short-circuit rating for a particular cable, one may ask if should you use the fault level (short-circuit current) at the start or the end of the cable.

As per the Australian Standard AS/NZS 3000, the short-circuit current at any point of a circuit shall be interrupted before the temperature of the conductors reaches the permissible limit. Since it is conservative to use the short-circuit current at the start of the cable in the calculation.

On the other hand, in the British Standard BS 7671:2018, the short-circuit current should be the effective fault current as the RMS value, where the due account is taken of the current limiting effect of the circuit impedances. Therefore, the short-circuit current at the end of the cable may be used.

Références :

AS/NZS 3008.1: Electrical installations — Selection of cables, Part 1.1: Cables for alternating voltages up to and including 0.6/1 kV

BS 7671 – 18th Edition The IET Wiring Regulations

IEC 60364-5-54 Electrical installations of buildings – Part 5-54: Selection and erection of electrical equipment – Earthing arrangements, protective conductors and protective bonding conductors

IEC 60364-4-43 Low-voltage electrical installations – Part 4-43: Protection for safety – Protection against overcurrent
Cable Pro Web

Logiciel de dimensionnement de câbles et de demande maximale dans le nuage. Pas d'installation, utilisation sur n'importe quel appareil.

Articles connexes :

Dimensionner les câbles actifs, neutres et de terre à l'aide de la norme AS/NZS 3008. Le guide couvre la capacité de courant, la chute de tension et les calculs de court-circuit avec des exemples.
Les disjoncteurs miniatures (MCB) protègent les circuits électriques contre les surintensités. Les disjoncteurs sont classés en fonction de leurs caractéristiques de déclenchement, représentées par différentes courbes telles que Z, B, C, K et D. Cet article offre des conseils pour sélectionner le bon type de disjoncteur pour votre application.
La norme AS/NZS 3000 prévoit différentes règles dans l'annexe C pour la demande maximale avec des prises de courant pour les installations électriques domestiques, commerciales et industrielles. Des exemples de calcul sont fournis pour les prises de courant doubles.
Le principe du dimensionnement économique des câbles consiste à sélectionner une taille minimale de câble qui puisse être utilisée en toute sécurité et dont le coût des pertes sur la durée de vie soit également minimisé.
Des équations permettant de calculer les dimensions des conduits et les facteurs d'espace conformément aux normes sont fournies. Des exemples de calculs de dimensionnement de conduits sont fournis.
La définition de la "tension de contact" est la tension entre les parties conductrices accessibles, exposées et étrangères, qui peut entraîner un risque d'électrocution en cas de défaut électrique. Cet article traite des règles AS/NZS 3000, BS 7671 et NFPA 70E concernant les tensions tactiles et fournit les équations nécessaires aux calculs.

Imprimer cet article :

Imprimer
Cable Pro Web Software
Cable Pro Web

Dimensionnement des câbles, demande maximale, conception du réseau BT, coordination de la protection, tirage des câbles et calculs de l'éclair d'arc.

Utilisé par :

Clients Web Cable Pro