0

カート

0
小計: AUD0
カートに商品がありません。

電力系統接地設計基準

Reference list of standards for power systems earthing/grounding categorised by applications

目次

Who created this list of earthing Standards?

Experienced electrical earthing design engineers with years of hands-on project expertise have developed this reference list of standards for power systems earthing.

These professionals have drawn on their extensive knowledge to compile a comprehensive guide that ensures compliance, safety, and reliability across various applications. From substations to renewable energy systems, the standards outlined here reflect industry best practices and are tailored to meet the diverse needs of modern electrical installations.

Where do the important earthing standards come from?

The most important earthing standards are developed by globally recognised organisations that specialise in electrical engineering, safety, and power system design. These organisations bring decades of expertise and research to create guidelines that ensure the safe operation of power systems across various industries. Here is an overview of the key contributors:

1. International Electrotechnical Commission (IEC)

The IEC is a global standards organisation that focuses on electrical, electronic, and related technologies. It develops internationally accepted standards that ensure compatibility, safety, and efficiency in power systems worldwide.

2. Institute of Electrical and Electronics Engineers (IEEE)

The IEEE is a leading professional association for electrical and electronics engineering. It publishes highly regarded standards that address technical aspects of power systems, including grounding, resistivity measurement, and renewable energy applications.

3. Australian/New Zealand Standards (AS/NZS)

AS/NZS standards are tailored to the specific requirements of Australia and New Zealand. They address local safety regulations, environmental conditions, and industry needs, ensuring compliance with regional practices.

4. British Standards Institution (BSI)

The BSI develops standards that serve as benchmarks for safety and performance in electrical installations. Its work is widely adopted in the UK and internationally for ensuring effective earthing practices.

5. International Council on Large Electric Systems (CIGRE)

CIGRE is a global organisation dedicated to advancing power system technology through research and technical guidance. It provides specialised insights into grounding system design and lightning performance for transmission lines.

6. Energy Networks Association (ENA)

The ENA represents electricity transmission and distribution network operators in regions such as the UK and Australia. It produces detailed guidelines for designing, testing, and maintaining earthing systems in power networks.

7. Electric Power Research Institute (EPRI)

EPRI conducts research to enhance the reliability, efficiency, and safety of power systems. Its contributions include innovative guidelines for emerging technologies like high-voltage direct current (HVDC) systems. These organisations collectively shape the global framework for earthing standards, ensuring consistency, innovation, and safety across diverse applications in power systems engineering.

List of Standards for Power Systems Earthing Design

Power systems earthing is a critical component of electrical safety and performance. Below is a comprehensive list of standards categorised by their specific applications, with additional standards included.

1. Substation Earthing

2. Testing of Earthing Systems

3. Touch/Step Voltage Limits

4. Renewable Energy Systems

5. Metallic Pipelines Safety

6. Industrial & Commercial Earthing

7. Overhead Lines

8. High Voltage DC Systems

9. Data Centres Earthing

10. Telecommunications

11. Fault Current Distribution

SafeGrid アーシングソフトウェア

規格に準拠した安全な接地システムを簡単に設計できます。

関連記事

ソフトウェア・シミュレーションがグリッド・インピーダンス試験をどのように強化し、接地システムの設計と性能評価の精度と効率を向上させるかを理解する。
本レポートでは、ケーブル送電線で接続された変電所の地絡電流解析を正確に行う方法を説明する。まず、単純なケーブル送電線と架空送電線の地絡電流について説明する。次に、ハイブリッドケーブル送電線を含む2つのケーススタディを紹介する。
銅はその優れた電気的特性から好まれることが多く、アルミニウムや亜鉛メッキ鋼は費用対効果から選ばれます。銅被覆鋼板は、コストと性能のバランスを取ることができます。この記事では、さまざまなシナリオに最適なオプションをご紹介します。
この技術ガイドは、電気系統、ローカル WTG と複合接地システムの設計、タッチ電圧とステップ電圧の危険性、土壌の電気抵抗測定、地絡電流、接地システムのソフトウェアモデリング、およびウィンドファームのための接地の検証試験について説明しています。
この記事で説明するように、変電所に砕石や砂利が敷かれる理由は、規格によれば2つある。
変電所のアースグリッドで地絡が発生すると、大地への電流の流れによって電圧勾配が生じる。適切に設計されたアースグリッドは、電流を安全に大地に放散します。

この記事を印刷する

プリント

SafeGrid アーシングソフトウェア

画面にソフトウェアとグラフが表示される電気機器。

規格に準拠した安全な接地システムを簡単に設計できます。

で使用されている:

SafeGrid アーシングクライアント