0

장바구니

0
소계: AUD0
장바구니에 제품이 없습니다.

단락 전원 케이블 크기 설명

단락 전원 케이블 크기 설명

Equations for short-circuit cable ratings are provided
Short circuit cable rating ELEK Software 1 1170x585 - Short Circuit Power Cable Sizing Explained

목차

Short-circuit cable ratings

During a short circuit, the fault current that flows (before the protective device interrupts) causes the temperature of the power cables to rise dramatically. The heat generated inside the cable during a fault depends on the conductor size and material as well as the fault current and its duration.

There are temperature limits that power cables can withstand where the limiting temperature is that of the cable insulation. The temperature limits of the insulation, which depend on their material type, are higher than the normal operating temperature limits since faults occur only for a short time.


Therefore, there is a minimum conductor size (of a particular cable type – the formulae contain quantities that vary with the materials used within the cables) required to withstand a certain fault current and the associated fault time. Short circuit rating of the main conductors of low-voltage power cables is an important factor to consider when sizing power cables alongside current-carrying capacity and voltage drop.

The following standards require designers to calculate the short-circuit rating of the conductors in power cables: AS/NZS 3008.1, BS 7671, and IEC 60364.

Adiabatic versus non-adiabatic method

The adiabatic method is used to calculate the minimum conductor size or another current-carrying conductor when heat loss from the current-carrying component during the short circuit is neglected. The adiabatic method is a conservative approach, that is valid for short-circuit duration of up to 5 s.

The non-adiabatic method, on the other hand, assumes an appropriate allowance for heat loss into the insulation during the short circuit, which is applicable for all short-circuit durations. The non-adiabatic short-circuit rating is determined by calculating a modifying factor that takes into account the non-adiabatic heating effect and applying it to the adiabatic short-circuit rating.

In comparison, the non-adiabatic method will provide significant increases in the permissible short-circuit ratings of metallic screens, sheaths, and small conductors < 10 mm2. However, the non-adiabatic method is more complicated and in practice for the usual range of power cable conductors, there will be less than a 5 % difference in the short-circuit rating obtained using the adiabatic method.

In general, when the ratio of the conductor size to short-circuit duration is > 10 (mm2/s) the increase in short-circuit rating is negligible and the adiabatic method can be used.

Calculation of the minimum cross-section area to withstand short-circuit current

The following equation is based on the adiabatic method which is commonly used for determining short-circuit ratings for low-voltage power cables. As mentioned previously the adiabatic method for short-circuit durations of up to 5 seconds.

\(S_{min} = \sqrt{\frac{I^2t}{K^2}}\)

Where

I is the short-circuit current (r.m.s over duration), in amperes.

t is the duration of short circuit, in seconds.

K is the constant depending on the material of the current-carrying component, the initial temperature and final temperature of the current-carrying component.

S is the cross-sectional area of the current-carrying component, in square millimetres

K-factor calculations

The calculation of K factor refers to the International Standard IEC 60364-5-54 Annex A.

The K factor is calculated from the formula below:

\(K = \sqrt{\frac{Q_c(\beta+20)}{\rho_{20}}\ln\frac{\beta+\theta_f}{\beta+\theta_i}}\)
Where \(Q_c\)is the volumetric heat capacity of conductor material (J/K mm3) at 20 °C; \(\beta\) is the reciprocal of temperature coefficient of resistivity at 0 °C for the conductor (°C); \(\rho_{20}\)is the electrical resistivity of conductor material at 20 °C (Ω.mm); \(\theta_i\) is the initial temperature of conductor (°C); \(\theta_f\) is the final temperature of conductor (°C).
The value of parameters for different materials are shown below.

Short-circuit temperature limits for cables

As the formula above shows, to calculate the K factor the initial and final temperatures of the conductors are required. There are various tables in the standards that provide either initial and final temperature limits or specify K-values or both.

Short-circuit current and duration

The short-circuit current to use should be based on the actual fault currents in the electrical system which can be calculated using software from a “fault study”. For determining the short-circuit rating for a particular cable, one may ask if should you use the fault level (short-circuit current) at the start or the end of the cable.

As per the Australian Standard AS/NZS 3000, the short-circuit current at any point of a circuit shall be interrupted before the temperature of the conductors reaches the permissible limit. Since it is conservative to use the short-circuit current at the start of the cable in the calculation.

On the other hand, in the British Standard BS 7671:2018, the short-circuit current should be the effective fault current as the RMS value, where the due account is taken of the current limiting effect of the circuit impedances. Therefore, the short-circuit current at the end of the cable may be used.

참조:

AS/NZS 3008.1: Electrical installations — Selection of cables, Part 1.1: Cables for alternating voltages up to and including 0.6/1 kV

BS 7671 – 18th Edition The IET Wiring Regulations

IEC 60364-5-54 Electrical installations of buildings – Part 5-54: Selection and erection of electrical equipment – Earthing arrangements, protective conductors and protective bonding conductors

IEC 60364-4-43 Low-voltage electrical installations – Part 4-43: Protection for safety – Protection against overcurrent
케이블 프로 웹

클라우드에서 케이블 크기 조정 및 최대 수요 소프트웨어. 설치 없이 모든 기기에서 사용 가능.

관련 문서:

AS/NZS 3008을 사용하여 활성, 중성 및 접지 케이블의 크기를 측정하세요. 이 가이드에서는 전류 용량, 전압 강하 및 단락 계산을 예제와 함께 다룹니다.
소형 회로 차단기(MCB)는 전기 회로의 과전류로부터 보호합니다. 이 문서에서는 Z, B, C, K, D와 같은 다양한 장치 곡선으로 표시되는 트립 특성에 따라 MCB를 분류하고 애플리케이션에 적합한 유형을 선택하는 방법에 대한 지침을 제공합니다.
AS/NZS 3000 표준은 부록 C에서 가정용, 상업용 및 산업용 전기 설비의 소켓 콘센트 최대 수요에 대한 다양한 규칙을 제공합니다. 이중 소켓 콘센트와 관련된 계산 예가 제공됩니다.
경제적인 케이블 사이징의 원칙은 사용하기에 안전하고 수명 기간 동안 손실 비용도 최소화할 수 있는 최소 케이블 크기를 선택하는 것입니다.
표준에 따라 도관 크기 및 공간 계수를 계산하는 방정식이 제공됩니다. 도관 크기 계산의 작동 예가 제공됩니다.
'터치 전압'의 정의는 전기적 결함 발생 시 감전 위험을 초래할 수 있는 접근 가능한 노출부와 외부 전도성 부품 사이의 전압을 말합니다. 이 문서에서는 터치 전압에 관한 AS/NZS 3000, BS 7671 및 NFPA 70E 규칙을 다루고 계산 공식을 제공합니다.

이 문서를 인쇄하세요:

인쇄
케이블 프로 웹 소프트웨어
케이블 프로 웹

케이블 크기, 최대 수요, LV 네트워크 설계, 보호 조정, 케이블 풀링 및 아크 플래시 계산.

사용처

케이블 프로 웹 클라이언트