

ELEK Cable HV[™] Software Tutorial

Cable Modelling

05/12/2023

Table of contents

Introduction	3
Cable Model 1: Single core 33 kV, XLPE insulated cable	4
Cable manufacturer datasheet	4
Modelling the cable	5
Validation of the current rating	7
Cable Model 2: Single core 1.5 kV DC, XLPO insulated cable	9
Cable manufacturer datasheet	9
Modelling the cable	0
Validation of the current rating12	2
Cable Model 3: Multi-core 400 kV single-armour submarine fibre optic composite power cable 13	3
Cable manufacturer datasheet13	3
Modelling the cable14	4
Validation of the current rating1	7
Appendix A: Cable Model 1 manufacturer datasheet19	9
Appendix B: Cable Model 2 manufacturer datasheet22	2
Appendix C: Cable Model 3 manufacturer datasheet	5

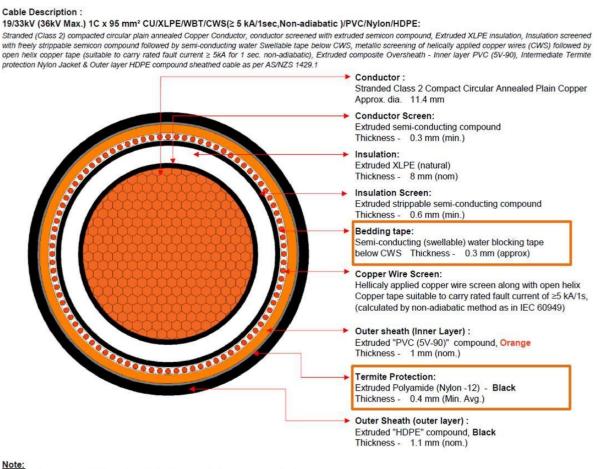
Introduction

ELEK Cable HV[™] Software can perform custom current rating calculations for a wide range of modern extruded power cables of varying constructions can be modelled including cables for DC and AC applications, single phase or three phases, multi-core of single core cables, sheathed and armoured cables. The built-in cable editor provides considerable flexibility in specifying the parameters for the various components of which a cable may be comprised.

To model a cable and determine its current rating requires knowledge about its physical construction. This information is obtained from cable manufacturer datasheets.

This tutorial will explain how to model several types of cables using Cable HV[™] Software:

- Cable Model 1 Single core 33 kV, XLPE insulated cable
- Cable Model 2 Single core 1.5 kV DC, XLPO insulated cable for solar applications
- Cable Model 3 Multi-core 400 kV, single-armour submarine fibre optic composite power cable


New methods to calculate the cable losses in three-core armoured cables was introduced with **CIGRE Technical Brochure 908** (2023). This technical brochure improves the IEC 60287-1-1 loss factor empirical equations, which are based on early research performed on cables with small conductor cross sections and common sheath. In general, for three-core armoured cables the current rating is increased by approximately 10 %.

The model is validated by calculating the current ratings in various standard configurations and comparing with results in the manufacturer datasheet (where provided).

Cable Model 1: Single core 33 kV, XLPE insulated cable

The full description of this cable is 19/33 kV, single-core, 95 mm² Cu, XLPE insulated cable.

Cable manufacturer datasheet

Semiconducting tape(s)/Binder tape(s) shall be provided wherever required.

Figure 1 – Manufacturer datasheet for Cable Model 1

Based on the parameters shown in the datasheet, the cable can be modelled in Cable HV[™] Software.

Modelling the cable

Step 1 – Select the cable layers

On the left-hand side of the Cable Editor window select the cable layers which are present for the Cable Model. In the case of Cable Model 1 the following cable layers are present:

- 1. Conductor
- 2. Conductor shield For modelling the conductor screen in the datasheet.
- 3. Insulation
- 4. Insulation screen
- 5. Bedding tape Custom layer added for Bedding (water-blocking) tape.
- 6. **Concentric neutral** For modeling the copper wire screen in the datasheet.
- 7. Outer sheath Custom layer added for outer sheath.
- 8. Termite protection Custom layer added for termite protection layer.
- 9. Jacket/Serving

Scable Model Editor [Mode 1]		2 ×
D 🖻 🖬 🗐 💶		Insulation General settings
Select cable layers:	4	
Conductor Conductorscreen Cond	Conductor, Copper, Round, stra Size = 95 mm ² , D=11.4 mm <u>Conductor screen</u> , Extruded semi-cond Th=0.3, D=12 mm insulation, XPE_United grea Th=8, D=28 mm <u>Custom</u> , Tape, Water blocking Th=0.3, D=23.8 mm <u>Custom</u> , Tope, Water blocking Th=0.3, D=23.8 mm <u>Custom</u> , Tope, Water blocking Th=0.3, D=23.8 mm <u>Custom</u> , Tope, Water blocking Th=0.7, D=23.8 mm <u>Custom</u> , Tope, Woren myton Th=0.4, D=33.3 mm <u>Jacket Serving</u> , Polyethylene Th=1, 1, D=37.5 mm External diameter, De= 37.5 mm	Diameter 28 mm ⊕ Thickness 8 mm ⊕ Maximum operating temperature 90 °C ⊕ Insulation type XLPE_Unfilled_greater than 18/30 (36) kV ✓ Relative permitivity, s 2.5 ⊕ Loss factor, tan3 0.001 ⊕ Thermal resistivity 3.5 Km/W ⊕ Specific heat capacity 2.4€+6 J/(m ¹ ,K) ⊕ Maximum short-circuit temperature 250 °C ⊕
Custom layers Insert Delete	Screen outside Sheath	Electrical capacitance Calculate

Figure 2 – Three steps of modelling the cable

Step 2 – Input the general settings

Input general settings – Description, Cable type, Phases, Cores, Voltage and Frequency – for the Cable Model.

Setting	Value			
Cable type	Extruded			
Cores	Single-core			
Phases	Three-phase			
Voltage (phase to phase)	33 kV			
Frequency	50 Hz			
Installation Settings				
Calculation based on	Conductor Temperature			
Maximum conductor operating temperature	Same as cable insulation			
Load factor	1			
Arrangement	Solidly bonded			

Table 1 – General & installation settings of Cable Model 1

Step 3 - Input the layer parameters

The input parameters from the datasheet are summarized in Table 2 and these values are entered into the Cable Editor by selecting the appropriate layer from the preview.

Layer	Parameter	Value
	Size	95 mm ²
	Class	2
	Material	Copper, plain wires
Conductor	Conductor type	Copper_Round, stranded (Extruded/Mineral insulation)
	Nominal diameter	11.4 mm
Conductor shield	Material	Extruded semi-conductor
	Thickness	0.3 mm

Table 2 – Parameters of Cable Model 1

Layer	Parameter	Value
	Material	XLPE_Unfilled_greater than 18/30 (36) kV
Insulation	Thickness	8 mm
	Maximum operating temperature	90 °C
Insulation screen	Material	Extruded semi-conductor
insulation screen	Thickness	0.6 mm
Rodding tana	Material	Tape_Water blocking
Bedding tape	Thickness	0.3 mm
	Material	Copper
	Construction	Round wires
Concentric neutral ¹	Thickness	1.35 mm
	Number of wires	48
Outer sheath	Material	Protective coverings_PVC up to and including 35 kV cables
	Thickness	1 mm
Tormito protoction	Material	Tape_Woven nylon
Termite protection	Thickness	0.4 mm
lookot/Sorving	Material	Polyethylene
Jacket/Serving	Thickness	1.1 mm
Over	all Diameter of all cables: 37.5 mr	n

Notes:

 According to the datasheet, lay length shall not exceed 10 times the pitch circle diameter of the wire screen. Here, pitch length of Screen is 31.15 mm. Therefore, Lay Length = 312 mm. The thickness of the Concentric neutral is not given in the datasheet. We assumed a thickness of 1.35 mm

2. Validation of the current rating

Cable Model 1 was validated by comparing the calculated current ratings from Cable HV[™] Software with those for standard configurations from the manufacturer datasheet.

According to the manufacturer datasheet the installation conditions are:

- Ambient air temperature: 40 °C
- Ambient soil temperature: 25 °C
- Soil thermal resistivity: 1.2 K.m/W
- Depth of lying: 0.8

The Cable Model 1 current rating comparison is shown in Table 3

Installation		Current rating (A)		
Installation		Datasheet	Cable HV™	Variation (%)
		333	336.9	1.16
In Air	²	315	314.02	0.31
		332	331.31	0.21
	181181181 000	297	301.39	1.46
Buried Direct ¹		292	301.11	3.03
		297	296.97	0.01
	TØTØTØT 000	265	263.14	0.70
Buried in Ducts ²		258	268.72	3.99
		267	269.39	0.89
		258	251.72	2.43

Table 3 –	Validation of	Cable Model 1
-----------	---------------	---------------

As the current ratings between Cable HV[™] and the manufacturer datasheet are close, it can be concluded that the cable has been modelled correctly.

Electrotechnik | Cable HV V6.5

Note:

- From the datasheet, D is the diameter of the cable and the distance between two cables is D. Since separation is calculated from core to core for cables, the separation here will be (0.5D + 0.5D) + D = 2D. In the calculator, we put separation as 2.
- Duct diameter is not provided in the datasheet.
 For cables combined in a single duct, duct outside diameter = 100 mm and duct inside diameter = 90 mm is assumed.

For cables in separate ducts, duct outside diameter = 65 mm and duct inside diameter = 55 mm is assumed.

For the duct settings, **PVC** is used as duct material and for fill type, **Air** is selected.

Cable Model 2: Single core 1.5 kV DC, XLPO insulated cable

The full description of this cable is 1.5 kV DC, single-core, 400 mm² Cu, XLPO insulated cable.

Cable manufacturer datasheet

Figure 3 – Manufacturer datasheet of 1.5 kV DC single-core Cu cable

Based on the parameters shown in the datasheet, the cable can be modelled in Cable HV™.

Modelling the cable

Step 1 – Select the cable layers

On the left-hand side of the Cable Editor window select the cable layers which are present for the Cable Model. In the case of Cable Model 2 the following cable layers are present:

- 1. Conductor
- 2. Insulation
- 3. Termite Protection Custom layer added for termite protection layer
- 4. Jacket/Serving

Step 2 – Input the general settings

Input general settings – Cable type, Phases, Cores, Voltage – for the Cable Model.

Setting	Value			
Cable type	Extruded			
Cores	Single-core			
Phases	DC			
Voltage (phase to phase)	1.5 kV			
Installation Settings				
Calculation based on	Conductor Temperature			
Maximum conductor operating temperature	Same as cable insulation			
Load factor	1			
Arrangement	Solidly bonded			

Table 4 – General Settings of Cable Model 2

Step 3 - Input the layer parameters

The input parameters from the datasheet are summarized in Table 5 and these values are entered into the Cable Editor by selecting the appropriate layer from the preview.

Layer	Parameter	Value			
	Size	400 mm ²			
	Class	2			
	Material	Copper, metal-coated wires			
Conductor	Conductor type	Copper_Round, stranded (Fluid/paper/PPL insulation)			
	Nominal Diameter	23.2 mm			
	Material	XLPE_Unfilled_greater than 18/30 (36) kV			
Insulation	Thickness	2 mm			
	Maximum operating temperature	120 °C			
Termite Protection	Material	Tape_Woven nylon			
Termite Protection	Thickness	0.4 mm			
lookot/Sonving	Material	Polyethylene			
Jacket/Serving	Thickness	2 mm			
	Overall diameter of the cable: 32 mm				

Table 5 –	Parameters	of Cable	Model 2
	i ulumotoro		

Figure 4 shows the combined layer of the Cable Model in Cable HV™

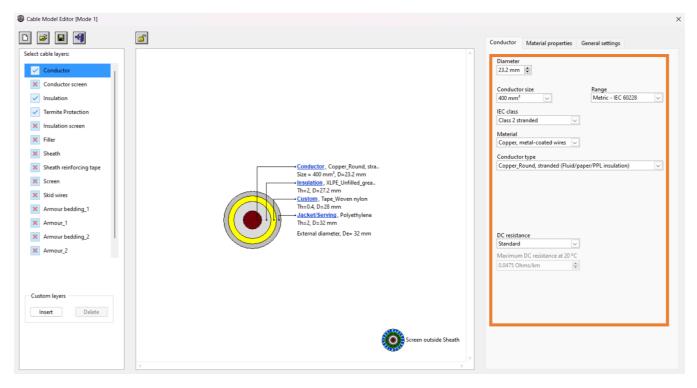


Figure 4 –Conductor layer of the Cable Model 2

Validation of the current rating

Cable Model 2 was validated by comparing the calculated current ratings from Cable HV[™] Software with those for standard configurations from the manufacturer datasheet.

According to the manufacturer datasheet the installation conditions are:

- Ambient air temperature: 40 °C
- Ambient soil temperature: 25 °C
- Soil thermal resistivity: 1.2 K.m/W
- Depth of laying: 0.5 m

The current rating comparison is shown in Table 6.

Installation		Current rating (A)		λ (ariation (0())	
Installa	allo	Dri	Datasheet	Cable HV™	Variation (%)
In Air		8	1048	1062.83	1.40
Buried Direct		8	928	777.13	16.26
Buried in Duct ¹	K(1,	\bigcirc	768	779.64	1.49

Table 6 – Validation of Cable Model 2

As the current ratings are close, it can be concluded that the assumption of modelling termite protection is reasonable.

Note:

 Duct diameter is not provided in the datasheet. For cables in separate ducts, duct outside diameter = 75 mm and duct inside diameter = 72 mm is assumed.
 For the duct settings, **PVC** is used as duct material and for fill type, **Air** is selected.

Cable Model 3: Multi-core 400 kV single-armour submarine fibre optic composite power cable

The full description of this cable is 400kV, 3 core, 1600 mm² single-armour submarine fibre optic composite power cable.

Cable manufacturer datasheet

No.		Description	Nom. Thickness (mm)	Approx. O.D (mm)
1	Copper conductor (round stranded compact)		Cross section: 1600mm ²	47.6
2	Conductor scr (semi-conduct	een ing tape +extruded layer)	0.27+2.0	52.7
3	XLPE insulation	on	27.0	106.7
4	Insulation scre	en	1.2	109.1
5	Sheath beddir	ng (semi-conducting tape)	2×1.0	113.1
6	Metallic sheat	h (lead alloy)	3.0	119.1
7	Lead alloy she (semi-conduct	eath corrosion protection ing PE)	3.0	125.1
8	Filler (shaped	filler)	/	1
		unit no.	1	/
		count /type	48G.652D	/
9	FOC unit	stainless steel tube	0.25	3.8
		Semi-conducting PE outer sheath	3.5	15.9
	Assembly		/	269.1
10	Binder (polym	eric tape)	0.1	269.3
11	Armour beddi	ng(PP yarns)	Φ2.0	271.9
12	Galvanized steel wire armour, Grade34		(137±4)×Ф6.0	283.9
13	Armour servin	g (two layers of PP yarns)	2×Φ3.0	295.9
	Cable weight in air in water	(approx.)	155.1 kg/m 98.2 kg/m	

Figure 5 – Manufacturer datasheet of 400 kV three-core submarine cable

Based on the parameters shown in the datasheet, the cable can be modelled in Cable HV™.

Modelling the cable

Step 1 – Select the cable layers

On the left-hand side of the Cable Editor window select the cable layers which are present for the Cable Model. In the case of Cable Model 3 the following cable layers are present:

- 1. Conductor
- 2. Conductor shield For modelling the conductor screen in the datasheet.
- 3. Insulation
- 4. Insulation screen
- 5. **Semi-conducting tape** Custom layer for semi conducting tape.
- 6. Sheath
- 7. **Outer sheath** Custom layer for outer sheath.
- 8. Filler
- 9. Binding tape Custom layer for binding tape.
- 10. Bedding Custom layer for bedding.
- 11. Armour
- 12. Jacket/Serving

Note:

FOC unit is ignored for this cable model.

Step 2 – Input the general settings

Input general settings – Description, Cable type, Phases, Cores, Voltage and Frequency – for the Cable Model.

Setting	Value
Cable type	Submarine
Cores	Three-core
Phases	Three-phase

Table 7 – General Settings of Cable Model 3

Setting	Value
Voltage (phase to phase)	400 kV
Frequency	50 Hz
Lay length	Calculate
Core lay length	3500 mm
Installatio	n Settings
Calculation based on	Conductor Temperature
Maximum conductor operating temperature	Same as cable insulation
Load factor	Varied according to experiment
Arrangement	Solidly bonded

Step 3 - Input the layer parameters

The input parameters from the datasheet are summarized in Table 8 and these values are entered into the Cable Editor by selecting the appropriate layer from the preview

Cable Layer	Parameter	Value	
	Size	1600 mm ²	
	Class	Class 2	
O an sheat and	Material	Copper, plain wires	
Conductor ¹	Conductor Type	Copper_Round, stranded (Fluid/paper/insulation)	
	Nominal diameter	47.6 mm	
Conductor screen	Diameter	52.7 mm	
Conductor Screen	Material	Extruded semi-conductors	
	Material	XLPE_Unfilled_greater than 18/30 (36) kV	
Insulation	Diameter	106.7 mm	
	Maximum operating temperature	0° 0€	
Insulation screen	Material	Extruded semi-conductor	
Insulation screen	Diameter	109.1 mm	
Somi conducting tons	Material	Tape_Water blocking	
Semi-conducting tape	Diameter	113.1 mm	
Sheath	Material	Lead	
Sneath	Diameter	119.1 mm	

Table 8 – Parameters of Cable Model 3

Cable Layer	Parameter	Value			
Outer sheath	Material	Insulation_PE (HD and LD)			
Outer sheath	Diameter	125.1 mm			
Filler	Material	Unknown – TR same as			
Filler	Diameter	269.553 mm			
Dinding topo ²	Material	Tape_Water blocking			
Binding tape ²	Diameter	269.555 mm			
Podding ³	Material	Polypropylene yarn			
Bedding ³	Diameter	271.9 mm			
	Material	Steel			
	Construction	Wires touching			
Armour_1 ⁴	Diameter	283.9 mm			
	No. of wires	137			
laakat/Sonving	Material	Polypropylene yarn			
Jacket/Serving	Diameter	295.9 mm			
	Overall diameter of the cable: 295.9 mm				

Note:

- 1. For the conductor, skin effect coefficient (ks) of **0.7** is specified.
- Since FOC unit is ignored, the thickness of the binding is set to minimum at 0.001 mm.
- 3. The thickness of the bedding is assumed to be 1.172 mm to match the diameter with the datasheet.
- Armour length of lay is not specified, hence length of lay is specified to 2740 mm and Lay direction is Contralay.

www.elek.com

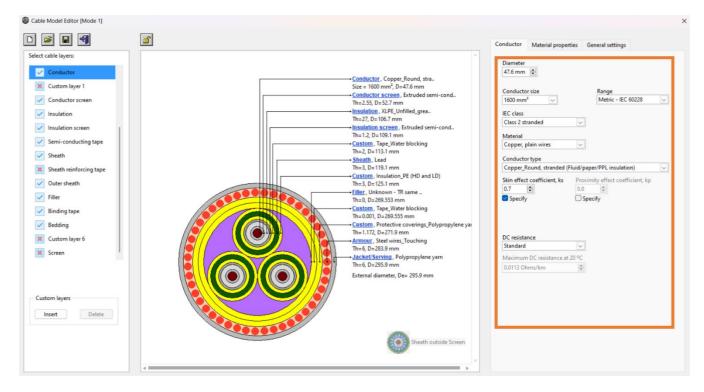


Figure 6 – Conductor layer of cable model 3

Validation of the current rating

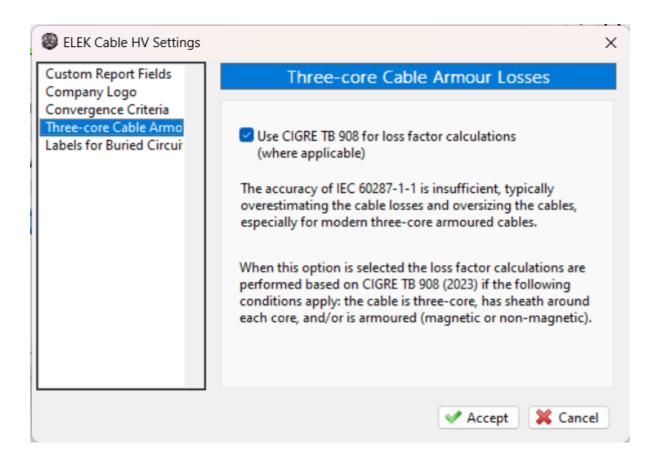
Cable Model 3 was validated by comparing the calculated current ratings from Cable HV[™] Software with those for standard configurations from the manufacturer datasheet. According to the manufacturer datasheet the installation conditions are:

- Ambient soil temperature: 26 °C
- Soil thermal resistivity: 0.8 K.m/W
- Depth of laying: 3 m

The current rating comparison is shown in Table 9.

Instal	Installation		Current rating (A)			Mariatian
Condition	Load Factor	Datasheet	Cable HV-IEC	Cable HV-TB 908	Variation- IEC (%)	Variation- TB 908 (%)
	0.3	1394	1394.25	1444.59	0.01	3.50

Table 9 – Validation of Cable Model 3



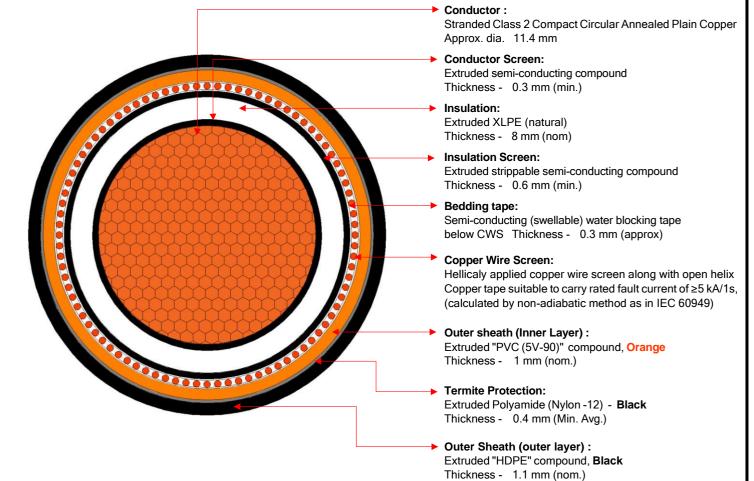
	0.4	1272	1263.37	1331.19	0.68	4.45
Buried	0.5	1163	1147.94	1226.83	1.30	5.20
	0.6	1067	1047.48	1132.66	1.85	5.80

As the current ratings with the IEC method are close, it can be concluded that the assumption of modelling water blocking tape and outermost layer is reasonable.

Note:

By default, the calculator performs the calculations by TB 908 method. In order to change the calculation to IEC method, click on the tools dropdown and go to settings. From Cable HV Settings, go to the "Three-core Cable Armour Losses" tab, uncheck the TB 908 check box. See figure 7 for reference.

Appendix A: Cable Model 1 manufacturer datasheet

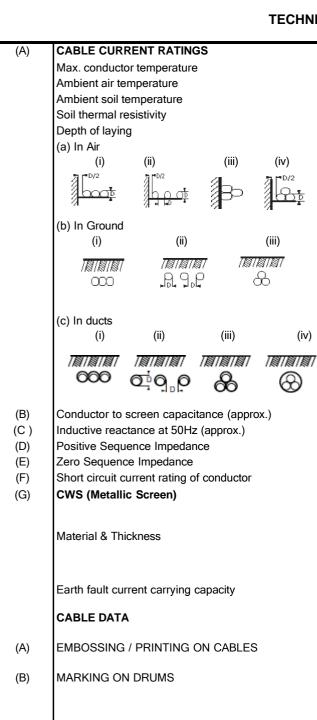


DIMENSIONAL DRAWING CASE : C1880

Cable Description :

19/33kV (36kV Max.) 1C x 95 mm² CU/XLPE/WBT/CWS(≥ 5 kA/1sec,Non-adiabatic)/PVC/Nylon/HDPE:

Stranded (Class 2) compacted circular plain annealed Copper Conductor, conductor screened with extruded semicon compound, Extruded XLPE insulation, Insulation screened with freely strippable semicon compound followed by semi-conducting water Swellable tape below CWS, metallic screening of helically applied copper wires (CWS) followed by open helix copper tape (suitable to carry rated fault current ≥ 5kA for 1 sec. non-adiabatic), Extruded composite Oversheath - Inner layer PVC (5V-90), Intermediate Termite protection Nylon Jacket & Outer layer HDPE compound sheathed cable as per AS/NZS 1429.1



Note:

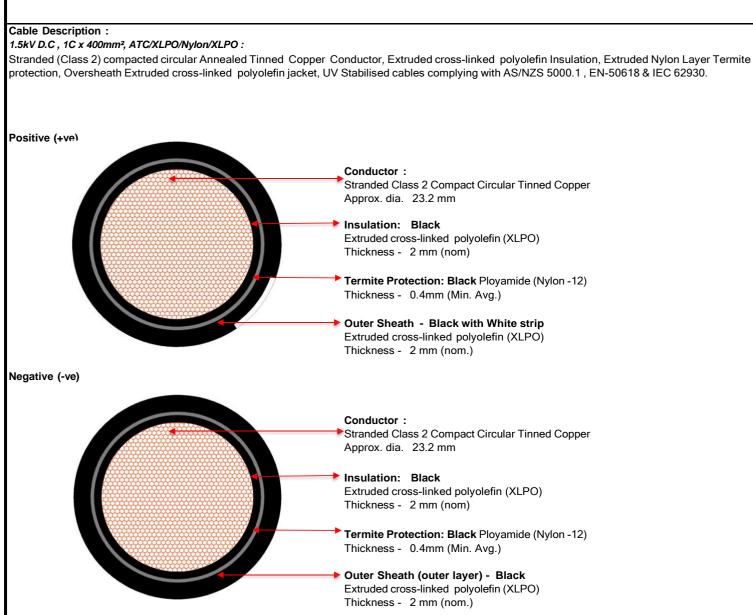
Semiconducting tape(s)/Binder tape(s) shall be provided wherever required.

Cable Technical Data:		Conductor Electrical Data:	
Approx. overall cable diameter : 39.9 ± 3 mm		1) Conductor DC resistance at 20 °C Ω/Km	
) Approx. cable weight : 2330 kg/km		0.1930 (max)	
3) Maximum pulling force (N) when pulled I	by pulling eye	2) Conductor AC resistance at 90 °C Ω/Km	
a) Copper Conductor cable	6650 N	0.247 (max)	
		3) Conductor short circuit rating	
4) Cable minimum bending radius (mm)		13.6 kA for 1 sec.	
a) During Installation =	1070	4) Metal Screen earth fault rating (if applicable)	
b) Installed =	640	≥ 5 kA / 1sec, Non-adiabatic	

TECHNICAL DATA SHEET

(C)

(D)


CABLE CURRENT RATINGS		1C x 95mm2, CU, 19/33kV (36kV Max.)
Max. conductor temperature	90 deg.C	,
Ambient air temperature	40 deg.C	
Ambient soil temperature	25 deg.C	
Soil thermal resistivity	1.2 K.m/W	
Depth of laying	0.8m	
(a) In Air		
(i) (ii) (iii) (iv)	Amps	(i) 333
► = D /2 ► HD/2 =	Amps	(i) 369
	Amps	(iii) 315
	Amps	(iv) 332
(b) In Ground		
(i) (ii) (iii)		
	Amps	(i) 297
াল্লাল্লা বিশ্বোদ্ধা বিশ্বোদ্ধা	Amps	(i) 207
<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Amps	(ii) 202
	Amps	(iii) 297
c) In ducts		
(i) (ii) (iii) (iv)		(i) 265
		(i) 258
TATATAT TATATAT TATATAT TATATAT		(iii) 260
യാ പ്പൂറ കി 🛞		(iv) 258
		(11) 200
Conductor to screen capacitance (approx.)	μF/km	0.165
nductive reactance at 50Hz (approx.)	Ω/km	0.1430
	Ω/km	0.1430 0.247 + j 0.1381
		0.247 ± 10.1301
Zero Sequence Impedance	Ω/km	0.7143 + j 0.0578
Zero Sequence Impedance Short circuit current rating of conductor		
Positive Sequence Impedance Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness	Ω/km KA/sec Metallic Copper Wire Screen follow diameter of each wire shall be 0.6m	0.7143 + j 0.0578
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen)	Ω/km KA/sec Metallic Copper Wire Screen follow diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity	Ω/km KA/sec Metallic Copper Wire Screen follow diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness	Ω/km KA/sec Metallic Copper Wire Screen follow diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum m and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA	Ω/km KA/sec Metallic Copper Wire Screen follow diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen follows diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum m and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	Ω/km KA/sec Metallic Copper Wire Screen follow diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s Country of Manufacturer	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg.,
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen followdiameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAR Size, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor mage 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg.,
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen follows diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor mat b) Type of cable 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not ixceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., hterial & size.
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen follows diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor man b) Type of cable c) Length and weight of cable on dr 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not ixceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., hterial & size.
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen follows diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s Country of Manufacturer a) Cable Voltage and conductor man b) Type of cable c) Length and weight of cable on dr d) Gross weight 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not ixceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., hterial & size.
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen followed diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not each wire screen KEI - CABLE GRID ELECTRIC CAR Size, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor mate b) Type of cable c) Length and weight of cable on drift d) Gross weight e) Dimension of reel 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not ixceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., hterial & size.
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen follows diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor man b) Type of cable c) Length and weight of cable on dr d) Gross weight e) Dimension of reel f) KEI INDUSTRIES LIMITED. 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., iterial & size. um
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen follows diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor man b) Type of cable c) Length and weight of cable on dr d) Gross weight e) Dimension of reel f) KEI INDUSTRIES LIMITED. 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not ixceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., hterial & size.
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen follows diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor man b) Type of cable c) Length and weight of cable on dr d) Gross weight e) Dimension of reel f) KEI INDUSTRIES LIMITED. 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., iterial & size. um e order (contract) number, If applicable.
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES	 Ω/km KA/sec Metallic Copper Wire Screen followed diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not each wire screen KEI - CABLE GRID ELECTRIC CARSize, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor mates b) Type of cable c) Length and weight of cable on drift d) Gross weight e) Dimension of reel f) KEI INDUSTRIES LIMITED. g) Contractor address and purchases h) Serial number of drum cross-reference 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., iterial & size. um e order (contract) number, If applicable.
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES MARKING ON DRUMS	 Ω/km KA/sec Metallic Copper Wire Screen followed diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not each wire screen KEI - CABLE GRID ELECTRIC CARSize, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor mates b) Type of cable c) Length and weight of cable on drates of the construction of reel f) KEI INDUSTRIES LIMITED. g) Contractor address and purchase h) Serial number of drum cross-reference 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., iterial & size. um e order (contract) number, If applicable. erenced with test records
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity CABLE DATA EMBOSSING / PRINTING ON CABLES MARKING ON DRUMS	 Ω/km KA/sec Metallic Copper Wire Screen follows diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CAI Size, CU/XLPE/WBT/CWS (5kA/1s Country of Manufacturer a) Cable Voltage and conductor mat b) Type of cable c) Length and weight of cable on dr d) Gross weight e) Dimension of reel f) KEI INDUSTRIES LIMITED. g) Contractor address and purchase h) Serial number of drum cross-refect i) Direction of rolling of drum (or arrow cable installation. As per our drum schedule 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., iterial & size. um e order (contract) number, If applicable. erenced with test records
Zero Sequence Impedance Short circuit current rating of conductor CWS (Metallic Screen) Material & Thickness Earth fault current carrying capacity	 Ω/km KA/sec Metallic Copper Wire Screen followed diameter of each wire shall be 0.6m exceed 4mm. Lay length shall not e the wire screen KEI - CABLE GRID ELECTRIC CARSize, CU/XLPE/WBT/CWS (5kA/1s) Country of Manufacturer a) Cable Voltage and conductor mate b) Type of cable c) Length and weight of cable on dr d) Gross weight e) Dimension of reel f) KEI INDUSTRIES LIMITED. g) Contractor address and purchase h) Serial number of drum cross-reference i) Direction of rolling of drum (or arrow cable installation. 	0.7143 + j 0.0578 13.6 ed by Open helix copper tape. Minimum im and gap between adjacent wires shall not xceed 10 times the pitch circle diameter of ≥5 kA/1s calculated by non-adiabatic method set out in IEC 60949 BLE, 19/33kV (36kV Max.), No. of Core x)/5V-90/NYLON/HDPE , Year of Mfg., iterial & size. um e order (contract) number, If applicable. erenced with test records

Appendix B: Cable Model 2 manufacturer datasheet

Electrotechnik | Cable HV V6.5

DIMENSIONAL DRAWING CASE : C1880

Note:

Binder tape/tapes shall be provided wherever required.

insulation, Sheathing Compound, Cable construction & dimensions shall be as per AS/NZS 5000.1, EN 50618 & IEC 62930 as applicable & HV Test Shall be as per EN 50618/IEC 62930.

Cable Technical Data:		Conductor Electrical Data:
) Approx. overall cable diameter : 33.8 ± 3 mm		1) Conductor DC resistance at 20 °C Ω/Km
2) Approx. cable weight : 4093 kg/km		0.0475 (max)
3) Maximum pulling force (N) when pulled by pu	ılling eye	2) Conductor DC resistance at 90 °C Ω/Km
a)Copper Conductor cable	28000 N	0.0608 (max)
		3) Conductor short circuit rating
 Cable minimum bending radius (mm) 		57.2 kA for 1 sec.
a) During Installation = 845		4) Metal Screen earth fault rating (if applicable)
b) Installed = 507		not applicable

	DATA	SHEET FOR PV SOLAR CABLES
r. No.	Description	Cores x sq.mm 1C X 400 sqmm CU
1)	Name of Manufacture	M/s KEI INDUSTRIES LIMITED
2)	Voltage Grade	1.5 / 1.5 KV DC
3)	Standards Applicable	Constructed to AS / NZS 5000.1, EN - 50618 & IEC 62930.
4)	Current Ratings	
,	Max. conductor temperature	120deg.C (Max 20000 hrs)
	Ambient air temperature	40 deg.C
	Ambient soil temperature	25 deg.C
	Soil thermal resistivity	1.2 K.m/W
	Depth of Laying	0.5m
	1	
a)	Unenclosed in air (A) ∞	1048
a)	Unenclosed in air (A)	893
b)	In Ground (A)	928
c)	In Duct (A)	768
5)	Positive Sequence Impedance (Ω /km)	0.0608 + j 0.000
6)	Zero Sequence Impedance (Ω/km)	0.0475 + j 0.000
7)	CABLE DATA	
a)	Drum Lengths/schedule Each Drum length Tolerance	As per our drum schedule As per our drum schedule
	Overall Quantity Toleranace	No positive, no negative
b)	SHEATH MARKING (Printing)	KEI - CABLEGRID ELECTRIC CABLE, 1.5 kV DC size,ATC/XLPO/NYLON/XLPO, year & country of manufacture, FOR DC USE ONLY.
	Note	Where cables have a phase conductor of nominal cross-sectional area greater than or e to 16mm ⁴ the conductor material and conductor nominal cross-sectional area is to be marked
c)	Marking on Drum	1500 V DC
		KEI INDUSTRIES LIMITED
		Constructed to EN 50618, IEC 62930 & AS/NZS 5000.1 as applicable
		No of cores and size of conductor and conductor material
		Designation of Insulation & Sheath
		Gross mass of the drum and cable.
		Year of Manufacture
		Length of the cable wound onto the drum
		An arrow to indicate the direction for rolling cable onto the drum
		Any special handling instructions
		PO or contract ref number
d)	Sequential length marking by Printing	KEI Unique Drum Identification No. As per meter marking clause of AS 5000.1

Appendix C: Cable Model 3 manufacturer datasheet

	1	1		1
No.		Description	Nom. Thickness (mm)	Approx. O.D (mm)
1	Copper condu	uctor (round stranded compact)	Cross section: 1600mm ²	47.6
2	Conductor sci (semi-conduc	reen ting tape +extruded layer)	0.27+2.0	52.7
3	XLPE insulation		27.0	106.7
4	Insulation screen		1.2	109.1
5	Sheath beddi	ng (semi-conducting tape)	2×1.0	113.1
6	Metallic sheath (lead alloy)		3.0	119.1
7	Lead alloy sheath corrosion protection (semi-conducting PE)		3.0	125.1
8	Filler (shaped	filler)	/	/
		unit no.	1	/
		count /type	48G.652D	/
9	FOC unit	stainless steel tube	0.25	3.8
		Semi-conducting PE outer sheath	3.5	15.9
	Assembly		/	269.1
10	Binder (polym	neric tape)	0.1	269.3
11	Armour beddi	ng(PP yarns)	Ф2.0	271.9
12	Galvanized steel wire armour, Grade34		(137±4)×Ф6.0	283.9
13	Armour servir	ng (two layers of PP yarns)	2×Φ3.0	295.9
	Cable weight	(approx.)		
	in air		155.1 kg/m	
	in water		98.2 kg/m	

Cable design volta	age U ₀ /U(kV)	231/400
System frequency	(Hz)	50
Max. operation ter	90	
Max. short circuit	250	
Power conductor DC resistance at 20 $^\circ \mathrm{C}(\Omega/km)$		0.0113
Power conductor	AC resistance at 90 $^\circ C(\Omega/km)$	0.0229
Calculated electric	cal stress at conductor screen (kV/mm)	12.4
Calculated electric	cal stress at insulation screen (kV/mm)	6.1
Ampacity	In the seabed (A)	786
(Load factor=1)		
IEC60287	In the land (A)	747
	In the seabed(A)	
	-LF=0.6	1067
	-LF=0.5	1 <mark>1</mark> 63
Dynamic current	-LF=0.4	1272
(Average load	-LF=0.3	1394
factor<1)	In the land (A)	
IEC60853	-LF=0.6	1015
	-LF=0.5	1108
	-LF=0.4	1213
	-LF=0.3	1329
Non-adiabatic short circuit current of power conductor for 1s/3s(kA)		229.8/133.2 (90/250)
Non-adiabatic short circuit current of metallic screen for 1s/3s per phase(kA)		25.7/15.6 (80/180)
Capacitance betw	een conductor and metallic screen, ϵ =2.3 (µF/km)	0.182
Charging current	(A/km)	13.20